An effective medium approach to the dynamic optical response of a graded index plasmonic nanoparticle

نویسندگان

  • H. Y. Chung
  • P. T. Leung
  • D. P. Tsai
چکیده

The optical response of graded index spherical particles is studied using an effective medium approach, where the homogenization of the graded particle is achieved by using a static effective dielectric function available in the literature. Full wave calculation using the standard Mie theory for this "homogenized system" shows that for a plasmonic particle, such an approximation can lead to highly-accurate results compared to the exact ones, especially for slowly and smoothly varying index profiles. An illustration is provided via an application of this method to the design of an optical cloak using a graded plasmonic coating based on the scattering cancelation scheme. This approach thus surpasses the various long-wavelength approximations currently available in the literature and provides an efficient numerical treatment of light scattering from these inhomogeneous particles without having to solve directly the Maxwell's equations with spatially varying dielectric functions. * Corresponding author at [email protected] OCIS numbers: 160.2710, 260.2065, 260.2110, 290.2200, 290.4020

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semi-analytical Solution for 3-D Dynamic Analysis of Thick Continuously Graded Carbon Nanotube-reinforced Annular Plates Resting on a Two-parameter Elastic Foundation

The The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of elastically supported continuously graded carbon nanotube-reinforced (CGCNTR) annular plates. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. An equivalent continuum model based on the Eshelby-M...

متن کامل

Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers

Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; therefore, the combination of MOFs and plasmonic nanoparticles would open the way for novel applica...

متن کامل

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

Impacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells

In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...

متن کامل

An Exact Elastodynamic Solution for Func-tionally Graded Thick-Walled Cylinders Subjected to Dynamic Pressures

In the present paper, an exact solution for transient response of an infinitely long functionally graded thick-walled cylinder subjected to dynamic pressures at the boundary surfaces is presented for arbitrary initial conditions. The cylinder is assumed to have a plane-strain condition and the dynamic pressures are assumed to be imposed uniformly and axis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012